Crystal Field Analysis, Electron-phonon Coupling and Spectral Band Shape Modeling in MgO:Cr³⁺

Mikhail G. Brik

Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan

Reprint requests to Dr. M. G. B.; E-mail: brik@fukui.kyoto-u.ac.jp

Z. Naturforsch. **60a**, 437 – 443 (2005); received August 4, 2004

A crystal field analysis of the energy level structure of Cr^{3+} in MgO crystal is performed, using the exchange charge model of the crystal field theory. The crystal field parameters acting on the optical electrons of Cr^{3+} are calculated from the crystal structure data; good agreement between the calculated and observed energy levels of Cr^{3+} in the title host is demonstrated. The Stokes shift S=5.9 and the energy of the phonons effectively interacting with the impurity center $\hbar\omega=405~cm^{-1}$ are derived from the experimental spectra of absorption and emission. The obtained values of S and $\hbar\omega$ were used for the computer modeling of the Cr^{3+} $^4T_{2g} \rightarrow ^4A_{2g}$ emission and $^4A_{2g} \rightarrow ^4T_{2g}$ absorption bands. From this modeling, the zero-phonon energy for the considered transitions was estimated to be $14.000~cm^{-1}$.

Key words: Crystal Field Theory; 3d-Ions; Electron-phonon Coupling.